
TOM: A library for topic modeling and browsing

Adrien Guille∗, Edmundo-Pavel Soriano-Morales∗

∗Laboratoire ERIC, Université Lumière Lyon 2
adrien.guille@univ-lyon2.fr, edmundo.soriano-morales@univ-lyon2.fr

Abstract. In this paper, we present TOM (TOpic Modeling), a Python library
for topic modeling and browsing. Its objective is to allow for an efficient analy-
sis of a text corpus from start to finish, via the discovery of latent topics. To this
end, TOM features advanced functions for preparing and vectorizing a text cor-
pus. It also offers a unified interface for two topic models (namely LDA using
either variational inference or Gibbs sampling, and NMF using alternating least-
square with a projected gradient method), and implements three state-of-the-art
methods for estimating the optimal number of topics to model a corpus. What is
more, TOM constructs an interactive Web-based browser that makes exploring
a topic model and the related corpus easy.

1 Introduction

Topic models are useful tools for unveiling the latent topical structure of text corpora.
They can make searching, browsing and summarizing these corpora easier. Several models
and algorithms to approximate them have been proposed in the recent years. The quality of
the discovered topics depends on the model, the approximation algorithm, the nature of the
corpus being studied, as well as the number of topics (Stevens et al., 2012). Therefore, in
order to perform an efficient topic-based analysis of a text corpus, it is important to compare
several approaches to identify the most relevant topics. However, this is a difficult task because
the existing implementations of the approximation algorithms are independent, which means
that one has to learn how data are structured in each implementation; what the functions to
manipulate each topic model are; how to fit these topic models on the exact same set of features,
etc. On the other hand, several methods have been proposed to estimate the optimal number
of topics to model a corpus, but – to the best of our knowledge – their implementations aren’t
publicly available.

In this short paper we present TOM (TOpic Modeling), an open source library written
in Python for analyzing a text corpus from start to finish, via the discovery of latent topics.
Apart from advanced corpus preparation functions, TOM offers a unified interface for existing
robust implementations of approximation algorithms, that makes fitting and manipulating topic
models easy. It also implements several functions to estimate the optimal number of topics
to model a corpus. What is more, TOM can automatically build a Web based interface for
exploring a topic model and a corpus in an interactive manner.



TOM: A library for topic modeling and browsing

2 Proposed library

In this section, we first describe the capabilities of the proposed library, TOM, then we
illustrate how to use it with the help of short code snippets. Sources and documentation are
available online at https://github.com/AdrienGuille/TOM.

2.1 Features

TOM operates on a text corpus, optionally supplemented with meta-data such as authors
or dates of writing/publication.

Corpus preparation Preparing the corpus is fundamental, in the sense that the relevancy
of all further processing depends on this step. Advanced preparation functions are available
for both French and English. TOM can lemmatize French using MElt, a maximum entropy
Markov model-based part-of-speech tagging system especially designed for French (Denis
and Sagot, 2012), and Lefff, a morphological and syntactic lexicon for French (Sagot, 2010),
to match {word, part-of-speech} pairs with lemmas. It can also lemmatize English in a similar
manner, using another maximum entropy model trained for English (Bird et al., 2009) and the
WordNet lexicon (Miller, 1995). Eventually, TOM constructs the vector space representation
with unigrams or n-grams as features, using either tf · idf or simply tf . The vector space is a
n×m matrix, with n the number of texts and m the number of features.

Topic models Given the vector space representation of a corpus and a small number of top-
ics k (k � m), a topic model consists of two matrices: W and H . W is a n × k matrix
that describes the texts in terms of topics, and H is a k × m matrix that describes topics in
terms of features (i.e. words or n-gram of words). More precisely, the coefficient wi,j defines
the importance of topic j in text i, and the coefficient hi,j defines the importance of feature
j in topic i. Two topic models are available in TOM: (i) Latent Dirichlet Allocation (LDA),
a probabilistic generative topic model proposed by Blei et al. (2003), and (ii) Non-negative
Matrix Factorization (NMF), a vector space factorization method which has recently became
popular for topic modeling (Berry and Browne, 2005). Concerning LDA, the library provides
two approximation algorithms: the original variational inference algorithm and the Gibbs sam-
pling variant (Griffiths, 2004). Concerning NMF, it relies on an algorithm based on alternating
least-square with projected gradient descent (Lin, 2007).

Parameter estimation Choosing an appropriate number of topics is critical to ensure a per-
tinent modeling of a text corpus. TOM implements three methods to guide this choice: (i) the
stability-based method proposed by Greene et al. (2014), (ii) the consensus-based method pro-
posed by Brunet et al. (2004), and (iii) the divergence-based method proposed by Arun et al.
(2010). Each of these methods is based on a particular assumption and leads to the computa-
tion of a specific metric, which value is related to the quality of a topic model for a corpus and
a given number of topics. TOM also offers functions to plot these metrics in order to facilitate
their visual inspection.

https://github.com/AdrienGuille/TOM


A. Guille and E.P. Soriano-Morales

Topic model browser The topic model browser offers 3 overviews: the author index, the
complete vocabulary and the topic cloud, where each topic is represented by a bubble labeled
with the most relevant words and which diameter is proportional to its overall frequency. It
also offers interactive detailed views for: each topic, each document, each author, and each
feature (i.e. words or n-gram of words) of the vector space. For instance, the detailed view
about a topic presents the most relevant features, the evolution of the topic frequency through
time, the list of related texts and the collaboration network that links authors. The detailed
view for a text presents the most significant features, the topic distribution and the most similar
texts. Note that some elements may be missing, depending on the meta-data available with the
input corpus.

2.2 Usage

Load and prepare a text corpus The following code snippet shows how to load a corpus of
French documents, lemmatize them and vectorize them using unigrams and tf · idf .

corpus = Corpus(source_file_path=’input/raw_corpus.csv’,
language=’french’, # language for stop-words
vectorization=’tfidf’,
n_gram=1,
max_relative_frequency=0.8,
min_absolute_frequency=4,
preprocessor=FrenchLemmatizer())

print ’corpus size:’, corpus.size
print ’vocabulary size:’, len(corpus.vocabulary)
print ’Vector for document 0:\n’, corpus.vector_for_document(0)

Instantiate a topic model and estimate the optimal number of topics Here, we instantiate
a NMF based topic model and generate plots for the three metrics to estimate the optimal
number of topics to model the loaded corpus.

topic_model = NonNegativeMatrixFactorization(corpus)
viz = Visualization(topic_model)
viz.plot_greene_metric(min_num_topics=5, max_num_topics=50,

tao=10, step=1, top_n_words=10)
viz.plot_arun_metric(min_num_topics=5, max_num_topics=50,

iterations=10)
viz.plot_consens_metric(min_num_topics=5, max_num_topics=50,

iterations=10)

To use LDA with Gibbs sampling instead of NMF, one only has to replace the first line
with the following:

topic_model = LatentDirichletAllocation(corpus, method=’gibbs’)



TOM: A library for topic modeling and browsing

Infer a topic model and save/load it To allow reusing previously learned topics models,
TOM can save them on disk, as shown below.

topic_model.infer_topics(num_topics=15)
utils.save_topic_model(topic_model, ’output/NMF_15topics.tom’)
topic_model = utils.load_topic_model(’output/NMF_15topics.tom’)

Print information about a topic model This code excerpt illustrates how one can manipu-
late a topic model, e.g. get the topic distribution for a text (a vector of length k) or the word
distribution for a topic (a vector of length m).

print ’\nTopic distribution for document 0:’, \
topic_model.topic_distribution_for_document(0)

print ’\nWord distribution for topic 0:’, \
topic_model.word_distribution_for_topic(0)

To facilitate interactions with topic models, TOM offers higher level functions, e.g. to
identify the topic with the highest weight for a given document, to get the most relevant words
for a given topic, or quickly print all the topics.

print ’\nMost likely topic for document 0:’, \
topic_model.most_likely_topic_for_document(0)

print ’\n10 most relevant words for topic 0:’, \
topic_model.top_words(0, 10)

print ’\nTopics:’
topic_model.print_topics(num_words=10)

3 Demonstration
In this demo, the audience will be invited to explore the EGC anthology (817 articles

published from 2004 until 2015) through a topic model browser automatically constructed by
TOM. See Guille et al. (2016) for more details about this topic model. Fig. 1 and Fig. 2 (page
5) give a glimpse of what the participants will have access to. They respectively show the topic
cloud overview of the anthology, and details about one of the topics. This topic model browser
can be accessed online at http://mediamining.univ-lyon2.fr/people/guille/egc2016. The atten-
dees will also have the opportunity to explore another topic model browser based on the tran-
scripts of 900+ speeches made by François Hollande as the President of France, between May
2012 and January 2016.

4 Future work
Future work includes adding more topic models and approximation algorithms. Most no-

tably, it would be interesting to implement an approximation algorithm that optimizes the Kull-
back–Leibler divergence objective function, since Ding et al. (2008) have shown that NMF is
then equivalent to Probabilistic Latent Semantic Analysis (PLSA), a seminal topic model pro-
posed by Hofmann (1999).

http://mediamining.univ-lyon2.fr/people/guille/egc2016


A. Guille and E.P. Soriano-Morales

FIG. 1 – Overview of the corpus with the topic cloud.

FIG. 2 – Detailed view about one of the discovered topics.



TOM: A library for topic modeling and browsing

References
Arun, R., V. Suresh, C. V. Madhavan, and M. N. Murthy (2010). On finding the natural number

of topics with latent dirichlet allocation: Some observations. In PAKDD, pp. 391–402.
Berry, M. W. and M. Browne (2005). Email surveillance using non-negative matrix factoriza-

tion. Journal of Computational and Mathematical Organization Theory 11(3), 249–264.
Bird, S., E. Klein, and E. Loper (2009). Natural Language Processing with Python. O’Reilly

Media.
Blei, D. M., A. Y. Ng, and M. I. Jordan (2003). Latent Dirichlet Allocation. Journal of Machine

Learning Research 3, 993–1022.
Brunet, J., P. Tamayo, and J. Golub, T.R.and Mesirov (2004). Metagenes and molecular pat-

tern discovery using matrix factorization. Proceedings of the National Academy of Sci-
ences 101(12), 4164––4169.

Denis, P. and B. Sagot (2012). Coupling an annotated corpus and a lexicon for state-of-the-art
pos tagging. Language Resources and Evaluation 46(4), 721–736.

Ding, C., T. Lib, and W. Peng (2008). Computational Statistics and Data Analysis (52), 3913–
–3927.

Greene, D., D. O’Callaghan, and P. Cunningham (2014). How many topics? stability analysis
for topic models. In ECML PKDD, pp. 498–513.

Griffiths, Thomas L., S. M. (2004). Finding scientific topics. Proceedings of the National
Academy of Sciences 101, 5228–5235.

Guille, A., E. P. Soriano Morales, and C. O. Truica (2016). Topic modeling and hypergraph
mining to analyze the EGC conference history. In EGC, pp. 383–394.

Hofmann, T. (1999). Probabilistic latent semantic indexing. In SIGIR, pp. 50–57.
Lin, C. J. (2007). Projected gradient methods for non-negative matrix factorization. Neural

Computation 19, 2756–2779.
Miller, G. A. (1995). Wordnet: A lexical database for english.
Sagot, B. (2010). The lefff, a freely available and large-coverage morphological and syntactic

lexicon for french. In LREC.
Stevens, K., P. Kegelmeyer, D. Andrzejewski, and D. Buttler (2012). Exploring topic coher-

ence over many models and many topics. In EMNLP-CoNLL, pp. 952–961.

Résumé
Cet article présente TOM, une bibliothèque Python pour la modélisation et l’exploration

de thématiques dont l’objectif est de permettre de mener une analyse efficace, de bout en
bout, d’un corpus textuel via la découverte de thématiques latentes. TOM offre des fonctions
pour la préparation et la vectorisation de corpus, une interface unifiée pour deux modèles de
thématiques (LDA et NMF), et implémente trois méthodes pour estimer le nombre optimal de
thématiques. Par ailleurs, TOM construit automatiquement un explorateur interactif permettant
facilement d’étudier un modèle de thématiques et les documents liés.


	Introduction
	Proposed library
	Features
	Usage

	Demonstration
	Future work

